If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4b^2+3=379
We move all terms to the left:
4b^2+3-(379)=0
We add all the numbers together, and all the variables
4b^2-376=0
a = 4; b = 0; c = -376;
Δ = b2-4ac
Δ = 02-4·4·(-376)
Δ = 6016
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6016}=\sqrt{64*94}=\sqrt{64}*\sqrt{94}=8\sqrt{94}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{94}}{2*4}=\frac{0-8\sqrt{94}}{8} =-\frac{8\sqrt{94}}{8} =-\sqrt{94} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{94}}{2*4}=\frac{0+8\sqrt{94}}{8} =\frac{8\sqrt{94}}{8} =\sqrt{94} $
| 7n-2n=20 | | 2.5433a+28.465=17.5 | | 5(x=1)=2x+17 | | 8r-7r=18 | | 10d+20=5 | | d+9=20 | | 17.5=2.5433a+28.465 | | 2s-s=7 | | 20w-11w=9 | | 9x=128+1x | | 8x+4(1.5x)=750 | | 16=8(q-94) | | .5s+12=3 | | h+17/10=7 | | 4v+17=57-v | | -2(y-3)=6 | | -2x+1=45 | | 4x^2-3=-69 | | 2−x= | | 2/3(6+2x)=24 | | 3=h+5/7 | | 3x-2x=2x-2x+32 | | 2x/3=10/36 | | 4x-7-(×+4)=3x+4-(2x-1) | | 18/20=n/30 | | 7=d+45/9 | | ?+2x=180 | | 3(z+1)+11=—2(z+13) | | 7500+150.25x=6995+175.50x | | 7500+150.25x=6995+175.50 | | 5(2x+3)-7x=21 | | 3=f/5-1 |